
The Sangedha Framework: A Causal Forensics Protocol for 

A definitive legal-technical doctrine establishing standards for attributing corporate liability when 

automated systems cause harm 

Corporations deploying algorithmic systems now face unprecedented legal exposure following a convergence of 

three critical developments: Delaware courts have extended Caremark oversight duties to mission-critical 

automated systems, federal regulators have secured record enforcement actions exceeding $8 billion in 2024, 

and technical standards now enable mathematically rigorous causal attribution of algorithmic failures to specific 

governance breakdowns. The Sangedha Framework synthesizes these 

developments into a comprehensive protocol that courts, regulators, and corporations can apply to determine 

when algorithmic negligence crosses the threshold from operational failure to actionable liability. 

This framework matters because existing legal doctrines were developed for human decision-making, not 

autonomous systems that make millions of decisions per second. The gap between traditional negligence 

standards and algorithmic reality has created profound uncertainty about corporate accountability. Boeing paid 

$2.5 billion after its MCAS algorithm contributed to 346 deaths, yet the legal analysis required novel 

applications of board oversight duties. Knight Capital lost $460 million in 45 minutes due to deprecated code, 

yet regulatory standards focused primarily on human controls. The proliferation of AI systems 

across finance, healthcare, transportation, and criminal justice demands a unified framework that establishes 

clear standards of care for algorithmic governance. 

The Sangedha Framework provides this clarity through four integrated layers: legal doctrine mapping 

algorithmic failures to established liability theories, technical forensics enabling rigorous causal attribution, 

mathematical verification proving system properties with courtroom-ready rigor, and executive accountability 

mechanisms that pierce the corporate veil when governance failures are systematic. Together, these layers 

transform algorithmic negligence from a technical mystery into a legally cognizable claim with clear elements, 

burdens of proof, and remedial pathways. 

Legal foundations establish algorithmic systems as mission-critical assets requiring 

board-level oversight 

The Delaware Chancery Court's 2021 Boeing decision fundamentally reshaped corporate law by holding that 

boards "utterly failed" their oversight duties when they lacked mechanisms to monitor airplane safety despite it 

being "the essence" of Boeing's business. This marked the first time a major court found Caremark 

liability for failure to implement monitoring systems for algorithmic operations, specifically Boeing's MCAS 

software that could override pilot control. The court rejected the business judgment rule's 

protection because directors made no effort to establish board-level safety reporting, waited 10 days after the 

first crash to discuss it, and "publicly lied" about their oversight practices. 



This extends the 1996 Caremark standard—requiring reasonable information and reporting systems—into the 

algorithmic domain with heightened scrutiny. When algorithmic systems perform mission-critical 

functions, the 2006 Stone v. Ritter refinement applies: directors face liability either for utterly failing to 

implement monitoring systems or for consciously failing to respond to red flags about system failures. 

The Boeing court's application demonstrates that algorithmic systems operating autonomously or 

making safety-critical decisions automatically trigger the "mission-critical" designation requiring direct board 

oversight, not mere management delegation. 

The Knight Capital enforcement action established complementary standards for operational controls. When 

Knight's trading algorithm executed errant orders causing $460 million in losses over 45 minutes, the SEC 

found willful violations of Rule 15c3-5's technology controls requirements. The firm failed to 

implement controls reasonably designed to prevent erroneous orders, lacked capital threshold alerts, and 

deployed code without proper testing. Critically, the SEC held that human procedural failures 

in algorithm deployment constitute regulatory violations, not mere technical glitches. This precedent 

establishes that algorithmic governance requires comprehensive pre-deployment testing, version control 

preventing deprecated code activation, automated alerts with proper monitoring, and emergency shutdown 

capabilities. (WilmerHale 

The Wells Fargo scandal provides the paradigm for sustained oversight failures creating systemic liability. Over 

14 years, executives knew of fraudulent account creation driven by flawed incentive systems but failed to act, 

resulting in $3 billion in settlements and unprecedented individual accountability. Former CEO John Stumpf 

paid $17.5 million and received a lifetime banking ban; Community Bank head Carrie Tolstedt faced criminal 

charges and forfeited $67 million. This establishes that when internal reports 

document algorithmic system problems for extended periods, executives and boards must act decisively or face 

both clawback of compensation and personal penalties including criminal prosecution. 

These precedents collectively establish a legal framework requiring: (1) board-level committees directly 

responsible for algorithmic system oversight when such systems are mission-critical; (2) regular board meeting 

time allocated to reviewing algorithmic performance, testing, and incidents; (3) mechanisms enabling boards to 

receive unfiltered reports of algorithmic failures, not sanitized management summaries; (4) immediate and 

thorough investigation of algorithmic failures causing harm; and (5) documentation demonstrating 

understanding of algorithmic capabilities, limitations, and risks. 

Technical forensics protocols enable tamper-evident reconstruction of algorithmic 
decision chains 

Modern forensic methodologies provide the evidentiary foundation for algorithmic negligence claims by 

establishing precisely what algorithms did, when they did it, who authorized it, and whether adequate controls 

existed. This requires integrating six complementary forensic disciplines into a unified 
investigative framework meeting Federal Rules of Evidence standards for admissibility. (NIST) (NIST 

eBPF-based system observability provides real-time, kernel-level telemetry that captures algorithmic system 

behavior with forensic-grade integrity. Operating within the Linux kernel itself, eBPF 

programs monitor system calls, file access, network connections, and process execution with sub-millisecond 



precision and negligible overhead below 5% CPU usage. This creates comprehensive audit trails showing 

exactly which processes accessed what data, when, and with what result. Unlike user-space logging that 

attackers can disable or manipulate, eBPF operates in kernel space with memory access restrictions that prevent 

tampering. For algorithmic negligence investigations, eBPF captures the complete execution 
environment: which version of algorithm code ran, what input data it received, what decisions it made, and what 

system resources it consumed. Tools like Falco and Tracee leverage eBPF for production-grade forensic 

telemetry that meets chain-of-custody requirements for legal proceedings. 

Merkle tree architectures transform these logs into tamper-evident evidence through cryptographic hash chains. 

Each log entry receives a SHA-256 hash incorporated into a binary tree structure where any 

modification to historical entries changes the root hash detectably. This provides mathematical proof 

that logs remain unaltered from collection through courtroom presentation. Certificate Transparency, 

Google's transparency log system protecting SSL certificates, demonstrates this approach's legal viability—

courts accept CT logs as self-authenticating evidence under FRE 902(14). For algorithmic 

systems, Merkle trees enable proof of inclusion (showing a specific algorithmic decision existed in the log) and 
proof of consistency (demonstrating current logs contain all previous entries unmodified). The 

constant-time append operations and logarithmic-time verification make this practical even for systems 

generating millions of log entries daily. 

Git forensics provides attribution of algorithmic code to specific developers with cryptographic certainty. Every 

commit includes SHA-256 hashes of content, author metadata with timestamps, and optional GPG signatures 

preventing repudiation. The distributed nature of Git means multiple independent copies of 

repository history exist, making history rewriting detectable. For negligence analysis, Git 

archaeology identifies: who introduced specific code sections, when testing occurred, what code review 

processes were followed, whether dangerous code was flagged during review, and whether known-problematic 

code was reverted then reintroduced. The ability to use to binary-search through thousands 

of commits and identify the exact change that introduced a bug provides powerful causation evidence. 

Memory forensics captures the runtime state of algorithmic systems through RAM dumps analyzed with the 

Volatility Framework. This reveals: loaded algorithm code and libraries, decrypted 

data existing only in memory, active network connections, process relationships showing whether malware 

infected algorithmic processes, and injected code indicating compromise. While volatile by nature, proper 

collection procedures using hardware write-blockers and immediate cryptographic hashing establish integrity. 

Memory forensics proves critical for determining whether algorithmic failures resulted from legitimate code 

errors, malicious compromise, or unauthorized modifications not reflected in source repositories. 

Network packet analysis reconstructs the distributed execution of algorithmic systems by capturing all network 

traffic to and from algorithmic infrastructure. Wireshark and similar tools provide 

microsecond-precision timestamps synchronized to NTP sources, enabling precise timeline reconstruction. For 

algorithmic trading systems, packet captures prove exactly when orders transmitted, what market data the 

algorithm received, and whether the system exhibited anomalous network behavior indicating compromise. The 

Supreme Court's Daubert standard requires that forensic methodologies have known error rates, standardized 



procedures, and peer review— (Annual Reviews )packet analysis meets these requirements through decades 
of established practice and NIST standardization. 

Statistical anomaly detection identifies algorithmic behavior deviations from established baselines using 

machine learning on system logs. Techniques like isolation forests, autoencoders, and LSTM networks trained 

on normal operation data flag anomalous patterns requiring investigation. The SEC's National 

Exam Program Analytics Office uses similar methods to detect irregular trading patterns. For negligence 

attribution, anomaly detection answers critical questions: Did algorithmic behavior change after a specific code 

deployment? Do certain algorithmic decisions show statistical bias indicating discrimination? Did the system 

exhibit warning signs before catastrophic failure? Critically, these methods must document false 

positive/negative rates and validation procedures to meet Daubert's requirements for expert testimony about 

analytical methodologies. 

Mathematical verification provides courtroom-ready proofs of algorithmic 

properties and failures 

The Sangedha Framework's mathematical layer transforms technical claims about algorithms into rigorous 

proofs meeting scientific evidence standards. This layer draws from formal methods developed over four 

decades in computer science, now mature enough for legal applications requiring certainty beyond statistical 
confidence. 

Formal verification using proof assistants like Coq, Isabelle, and TLA+ establishes algorithmic properties with 

mathematical certainty. CompCert, a verified C compiler proven correct in Coq through 200,000+ lines of 

proof, demonstrates this approach's maturity. The seL4 microkernel, verified in Isabelle, proves that its 

implementation correctly enforces security policies—if seL4 fails, the proof identifies an error in the formal 

specification, not the implementation. For algorithmic negligence, formal verification 

addresses critical questions: Does an algorithm provably implement stated requirements? Do safety properties 

hold under all possible inputs? Can the algorithm enter unsafe states? The proofs themselves become evidence, 

with small trusted computing bases that experts can verify independently. 

The key advantage over testing lies in completeness. Testing explores specific scenarios while formal 

verification proves properties hold for all possible executions. Amazon Web Services relies on TLA+ to 

verify distributed systems like S3 and DynamoDB, finding serious bugs that testing missed. For legal purposes, 

formal verification establishes either that safety properties were proven (indicating due diligence) or that no 

verification occurred despite safety-critical operations (indicating negligence). The Daubert factors strongly 

favor formal methods: they are testable (proofs can be checked mechanically), peer-reviewed (published in 

venues like CAV and POPL), have known limitations (decidability boundaries are well-understood), follow 

standardized procedures, and enjoy acceptance in the computer science research community. 

Probabilistic model checking quantifies risks in algorithmic systems operating under uncertainty. Tools like 

PRISM and Storm model algorithms as Markov Decision Processes and compute exact probabilities of failures 

or expected time to catastrophic events. For autonomous vehicles, model checking can prove 

statements like "the probability of collision given detected obstacle is less than 10° per hour" or identify that no 



such guarantee exists. The mathematics underlying probabilistic model checking—value iteration, policy 

synthesis, reachability analysis—enables counterfactual reasoning: Would alternative algorithmic strategies 

have prevented the observed failure? 

The Boeing MCAS failure illustrates where probabilistic verification could have identified risks. MCAS relied 

on a single angle-of-attack sensor without redundancy, and its repeated nose-down commands overwhelmed 

pilot control. Model checking of this architecture would have revealed: unacceptable 

probability of catastrophic failure given known sensor failure rates, existence of alternative policies (sensor 

fusion, pilot override) with orders of magnitude better safety guarantees, and violation of safety properties 

under realistic fault scenarios. Boeing's failure to conduct such analysis despite MCAS being safety-critical 

demonstrates the negligence standard: when algorithms control life-safety systems, probabilistic verification 

becomes part of reasonable care. 

Temporal logic provides the specification language for expressing safety requirements formally. Linear 

Temporal Logic captures properties like "if the algorithm detects an obstacle, emergency braking must activate 

within 100 milliseconds"—expressed as G(obstacle_detected — F<100ms emergency_brake). Computation 

Tree Logic handles branching futures: "after any system state, 1t remains possible to return to a safe state"—

expressed as AG(EF safe_ state). These specifications transform natural language regulatory 
requirements into mathematically precise properties that model checkers can verify algorithmically. The SEC's 

proposed Predictive Analytics rule requiring investment advisers to eliminate conflicts of interest could be 

expressed in temporal logic, enabling automated verification of compliance. 

Causal inference using transfer entropy and Granger causality establishes directed causal relationships between 

algorithmic inputs and outputs. Transfer entropy T_X—Y measures information flow from variable X to 

variable Y, quantifying how much knowing X's past improves prediction of Y's future beyond Y's own history. 

This distinguishes mere correlation from causation. For algorithmic bias analysis, transfer 

entropy can prove whether protected characteristics like race causally influence algorithmic decisions, or 

whether correlations arise spuriously from confounders. Granger causality, proven equivalent to transfer entropy 

for Gaussian processes, provides a computationally lighter alternative suitable for large-scale log analysis. 

The legal significance lies in moving from "algorithm A was running when harm B occurred" to "algorithmic 

decision A caused harm B with quantified confidence intervals." Judea Pearl's do-calculus framework enables 

counterfactual analysis: "If the algorithm had not taken action A, would harm B have occurred?" 

These causal methods require careful attention to confounders and hidden variables, but when 

properly applied provide scientific rigor meeting Daubert standards. The landmark Daubert decision itself 

involved causal claims about birth defects—(Wikipedia +2 algorithmic causality analysis uses fundamentally 
similar statistical methodologies now with decades of peer review in epidemiology and econometrics. 

Statistical hypothesis testing establishes negligence through formal tests comparing algorithmic behavior to 

legal standards. For disparate impact claims under anti-discrimination law, two-proportion z-tests determine 

whether algorithms grant favorable outcomes to protected groups at statistically different rates. 

Cohen's d effect sizes quantify the magnitude of discrimination, with established conventions (d=0.2 small, 

d=0.5 medium, d=0.8 large) enabling courts to assess materiality. Power analysis ensures adequate sample sizes 



—underpowered studies that fail to detect discrimination due to insufficient data do not exculpate defendants. 

For legal proceedings, hypothesis testing must address multiple comparisons carefully. Testing 100 algorithmic 

fairness metrics at a=0.05 yields five false positives on average. Bonferroni correction (a'=a/k) or 

Benjamini-Hochberg false discovery rate control maintains statistical validity. Courts applying Daubert 

scrutinize whether experts properly controlled Type I error inflation. The legal standard of proof varies by 

context—criminal prosecution requires proof beyond reasonable doubt (approximately 95-99% confidence), 

while civil cases use preponderance of evidence (>50% probability). Properly conducted statistical 

analysis with reported confidence intervals enables courts to assess whether evidence meets the applicable 
burden. 

The integrated framework establishes clear liability standards for algorithmic 
governance failures 

The Sangedha Framework synthesizes legal precedents, technical forensics, and mathematical verification into a 

unified protocol for algorithmic negligence attribution. This integration occurs across four sequential phases: (1) 

establishing duty through mission-critical designation, (2) documenting breach through forensic evidence of 

governance failures, (3) proving causation through mathematical analysis linking failures to harms, and (4) 

attributing individual liability through executive accountability mechanisms. 

Phase 1 establishes that algorithmic systems performing core business functions trigger enhanced 

oversight duties. The mission-critical standard derives from Boeing's holding that algorithmic systems 

controlling safety-critical functions require direct board oversight. This extends to: algorithmic trading systems 

controlling capital deployment at financial institutions, machine learning models making credit decisions 

affecting consumer access to capital, recommendation algorithms determining content exposure on platforms 

with public safety implications, and autonomous vehicle control systems. When algorithms make decisions 

previously requiring human judgment in regulated domains, they automatically qualify as mission-critical. This 

designation imposes five specific requirements: dedicated board committee with algorithmic oversight 

responsibility, quarterly review of algorithmic performance metrics and incident reports, direct reporting 

channels from technical teams to board (not filtered through management), documented understanding of 

algorithmic capabilities and limitations, and immediate board notification of material algorithmic failures. 

Phase 2 documents governance failures through forensic evidence collection and analysis. Investigators 

deploy the six forensic methodologies in parallel: eBPF telemetry captures real-time system behavior, Merkle 

tree logs provide tamper-evident audit trails, Git analysis attributes code to specific developers and identifies 

testing gaps, memory forensics reveals runtime state and potential compromises, network analysis reconstructs 

distributed system interactions, and statistical anomaly detection flags deviations from normal behavior. 

Each methodology generates specific evidence types: eBPF shows which algorithm versions 

executed and what decisions they made, Merkle trees prove log integrity with cryptographic certainty, Git 

commits demonstrate whether code review processes identified risks, memory dumps reveal whether malware 

compromised algorithmic systems, packet captures establish precise timing of distributed system 

communications, and anomaly detection identifies suspicious behavioral changes. The integration of multiple 



evidence sources enables triangulation—convergent evidence from independent methodologies strengthens 

causal claims while divergent evidence flags investigation gaps. 

Phase 3 establishes causation through mathematical analysis connecting governance failures to observed 

harms. This employs four complementary techniques: formal verification reveals whether safety properties 

were proven before deployment, probabilistic model checking quantifies failure probabilities and identifies 

safer alternative strategies, causal inference using transfer entropy establishes directed causation from 

algorithmic decisions to harms, and statistical hypothesis testing determines whether algorithmic behavior 

violates legal standards with quantified confidence. For example, investigating an autonomous vehicle collision 

would: check whether safety properties were formally verified (establishing due diligence or its absence), use 

probabilistic model checking to compute collision probability given system architecture and prove whether 

alternative designs would have prevented the incident, apply transfer entropy to determine which system 

components (perception, planning, control) causally contributed most to the collision, and conduct statistical 

tests comparing the system's collision rate to regulatory safety standards or human baseline performance. The 

mathematical rigor of these methods enables them to survive Daubert challenges—they are testable, peer- 

reviewed, have known error rates, follow standardized procedures, and are generally accepted in relevant 
scientific communities. (Leppard Law +3 

Phase 4 attributes individual liability to executives who failed oversight duties. Multiple liability theories 

apply depending on specific failures. Sarbanes-Oxley Section 302 imposes personal certification duties on 

CEOs and CFOs for internal controls—algorithmic systems affecting financial reporting fall within this scope. 

Section 404 requires management to assess control effectiveness annually, extending to algorithmic controls. 

Dodd-Frank's mandatory clawback provisions require recovery of executive compensation following accounting 

restatements triggered by algorithmic errors, regardless of fault. Securities fraud claims under Rule 

10b-5 attach when executives make material misrepresentations about algorithmic capabilities while knowing of 

system deficiencies—the SolarWinds case established this extends to technical officers like CISOs. 

Criminal obstruction charges under 18 U.S.C. § 1519 apply when executives conceal algorithmic failures during 

regulatory investigations, as demonstrated by the conviction of Uber's Chief Security Officer for concealing a 

data breach. State law fiduciary duty claims provide an additional liability path—both 

over-reliance on algorithmic decisions without understanding (abdication of duty) and under-utilization of 

available algorithmic tools (falling behind industry standards) can constitute breaches. 

This four-phase structure provides clarity for corporations implementing algorithmic governance. The 

requirements are specific and actionable: identify mission-critical algorithmic systems through objective criteria 

(safety impact, regulatory significance, scale of decisions), implement required oversight structures (board 

committees, reporting mechanisms, incident response protocols), deploy forensic capabilities proactively (eBPF 

monitoring, Merkle tree logging, comprehensive version control, statistical baselines), and document 

verification efforts (formal verification attempts, probabilistic model checking results, causal analysis of 

deployed systems, statistical validation of fairness properties). Corporations that implement these measures 

establish strong evidence of reasonable care, while those lacking such documentation face substantial liability 

exposure. 



Regulatory convergence across multiple jurisdictions reinforces the framework's 

core principles 

The Sangedha Framework aligns with emerging regulatory requirements across the European Union, United 

Kingdom, United States, and Singapore, indicating global convergence toward specific algorithmic governance 

standards. This regulatory alignment strengthens the framework's legitimacy and provides corporations with 

clear compliance pathways. 

The EU AI Act, effective August 2024 with staged implementation through 2026, mandates comprehensive risk 

management systems for high-risk AI under Article 9, This requires continuous iterative risk 

assessment throughout the AI lifecycle, evaluation under both intended use and reasonably foreseeable misuse 

scenarios, and integration with post-market monitoring. Article 

17's quality management system requirements demand documentation of design choices, model selection 

decisions, and risk mitigation measures—directly supporting forensic reconstruction of algorithmic governance. 

The enforcement mechanism imposes fines up to €35 million or 7% of global revenue for prohibited 

practices, creating substantial incentives for robust governance. The framework's technical forensics 

protocols enable companies to demonstrate compliance with Article 9's risk management requirements through 

documented testing, validation, and monitoring. 

The UK Online Safety Act, with illegal content duties enforceable from March 2025, requires platforms to 

assess how algorithms impact harmful content exposure. Regulator Ofcom can impose fines 

up to £18 million or 10% of worldwide revenue and bring criminal charges against senior managers for failures. 

The Act's risk assessment requirements align precisely with the Sangedha Framework's 

Phase | mission-critical designation—companies must identify where algorithmic content distribution creates 

safety risks and implement controls. The framework's statistical anomaly detection methodologies enable 

platforms to monitor algorithmic behavior for concerning patterns, while formal verification can prove content 

moderation algorithms satisfy safety properties. 

Singapore's Model AI Governance Framework, updated in 2020, establishes an accountability-based approach 

emphasizing explainability, transparency, and fairness. The framework mandates human oversight at 

appropriate levels (human-in-the-loop, human-over-the-loop, or human-out-of-the-loop) based on risk 

assessment. Its algorithm requirements—explainability, robustness, regular tuning, traceability, 
reproducibility, and auditability—map directly to the Sangedha Framework's technical forensics requirements. 

The complementary AI Verify testing framework provides standardized tests for 11 principles, 

enabling companies to demonstrate governance effectiveness. While Singapore's framework remains 

voluntary, courts increasingly reference it when assessing reasonable care standards under the Personal Data 
Protection Act. 

US regulatory enforcement has intensified dramatically, with the SEC's fiscal year 2024 producing record $8.2 

billion in financial remedies and 124 officer and director bars. The SEC's enforcement actions 

against "AI washing"—false claims about AI capabilities—establish that existing securities laws fully apply to 

algorithmic systems with no technology exception. (Wealth Management ) (White & Case LLP) The March 2024 actions 

against Delphia and Global Predictions, settling for $225,000 and $175,000 respectively for false AI claims, 



demonstrate regulators' willingness to pursue relatively modest violations to establish precedents. 

The SEC's 2025 Examination Priorities explicitly target AI use in investment advice, trading, 

and back-office operations. The CFTC's Electronic Trading Risk Principles, proposed in 2020, 

require prevention, detection, and mitigation controls for algorithmic trading—directly paralleling the Sangedha 

Framework's forensic capabilities. Pre-trade risk controls (order frequency limits, 

size parameters, price collars, self-trade prevention) align with formal verification's ability to prove algorithms 

respect bounds. 

IEEE Standard 7003-2024 on algorithmic bias provides technical specifications that integrate seamlessly with 

the framework's mathematical verification layer. The standard requires validation dataset 

criteria ensuring representativeness, application boundary documentation preventing out-of-scope use, user 

expectation management, and bias profile development balancing productive and harmful bias. These 

requirements map to: statistical hypothesis testing for bias detection (validation datasets), formal specification 

of algorithm scope (application boundaries via temporal logic), and causal inference identifying discriminatory 

pathways (bias profiling through transfer entropy). Organizations can cite IEEE 7003 compliance as evidence of 

reasonable care while leveraging the Sangedha Framework's verification methods to demonstrate actual 

compliance rather than aspirational policy statements. IEEE Standards Group 

This regulatory convergence creates powerful network effects. Companies implementing the Sangedha 

Framework to comply with EU AI Act requirements simultaneously satisfy UK Online Safety Act obligations, 

SEC examination priorities, and IEEE technical standards. The framework functions as a unified compliance 

architecture addressing multiple jurisdictions' requirements through integrated governance rather than 

jurisdiction-specific point solutions. Multinational corporations benefit from standardized forensic 

infrastructure, verification methodologies, and documentation that demonstrate compliance across regulatory 

regimes. As algorithmic systems increasingly operate globally, this unified framework reduces compliance costs 

while providing superior governance compared to fragmented approaches. 

Implementation requires organizational integration across legal, technical, and 
executive functions 

Successful deployment of the Sangedha Framework requires corporations to bridge historically separate 

organizational silos, creating integrated teams combining legal expertise, technical capabilities, and executive 

oversight. This organizational transformation proves as critical as the technical methodologies themselves. 

Legal teams must develop technical literacy sufficient to specify algorithmic requirements in temporal 

logic and assess verification evidence. This does not require lawyers to become computer scientists, but 

demands familiarity with formal specification concepts, probabilistic reasoning, and causal inference 

frameworks. Progressive legal departments are hiring "legal engineers" with computer science backgrounds 

who translate regulatory requirements into formal specifications that verification tools can process. For 

example, GDPR's right to deletion within 30 days becomes the temporal logic formula G(deletion_request —

F<30days data_deleted), which PRISM can model check against data retention system specifications. 

Similarly, fair lending requirements prohibiting discrimination become statistical hypothesis 

tests comparing approval rates across protected groups with documented significance levels and effect sizes. 



Legal teams must also understand chain of custody requirements for digital forensic evidence, ensuring 

technical teams collect evidence meeting FRE 902(14) standards for self-authentication. 

Technical teams must adopt forensic-grade development practices treating all systems as potentially 

subject to legal scrutiny. This shifts software development from optimizing purely for performance and 

features toward prioritizing auditability, explainability, and verifiability. Concretely, this means: implementing 

eBPF-based observability from initial deployment rather than adding it post-incident, structuring all logs as 

Merkle trees with cryptographic integrity guarantees, requiring GPG-signed Git commits with detailed 

messages explaining changes, conducting formal verification for safety-critical components with documented 

proof attempts, maintaining comprehensive test suites with coverage metrics and documented test case selection 

rationale, and performing regular bias audits using statistical methods with published methodologies. Technical 

teams must recognize that "it works in testing" provides insufficient governance—they must prove properties 

hold through verification or document why verification is infeasible. 

Executive teams must establish governance structures explicitly allocating algorithmic oversight 

responsibilities. The board must create a dedicated Technology Risk Committee (or expand existing Risk 

Committee mandates) with: at least one director with computer science or AI expertise, quarterly meetings 

reviewing algorithmic incident reports and verification results, direct access to technical teams without 

management filtering, authority to retain independent technical auditors, and explicit charter covering 

algorithmic systems performing mission-critical functions. The CEO must designate a Chief AI Officer or Chief 

Algorithm Officer at C-suite level with: authority to halt deployments failing verification requirements, 

responsibility for enterprise-wide algorithmic governance policy, budget for verification tools and external 

audits, and direct reporting line to board Technology Risk Committee. The CFO must ensure internal controls 

under SOX 404 explicitly cover algorithmic systems affecting financial reporting, with documented testing 

procedures and control deficiency escalation paths. 

Cross-functional Algorithmic Review Boards must approve high-risk system deployments. These boards 

should include: legal counsel assessing regulatory compliance and liability risk, technical architects reviewing 

verification evidence and forensic readiness, ethicists evaluating fairness and bias implications, business owners 

articulating value and accepting residual risks, and security teams confirming systems resist tampering and 

maintain evidence integrity. The board reviews documentation packages including: formal specifications of 

safety properties, probabilistic model checking results quantifying failure risks, statistical bias analysis with 

confidence intervals, verification attempts (successful proofs or documented infeasibility), incident response 

and forensic readiness plans, and executive accountability and compensation clawback triggers. Only systems 

passing this review with documented board approval should enter production. 

This organizational integration enables rapid, effective response when algorithmic incidents occur. Pre-deployed 

forensic infrastructure immediately captures evidence. Legal teams understand what evidence exists and how to 

preserve it. Technical teams can conduct causal analysis and verification while maintaining chain of custody. 

Executives have clear escalation protocols and authority to make decisions. The alternative—discovering after 

an incident that forensic capabilities don't exist, evidence was overwritten, technical teams lack causal analysis 

skills, and accountability structures are ambiguous—exposes corporations to massive liability. 



The framework establishes algorithmic negligence as a cognizable claim with clear 
elements and remedies 

The Sangedha Framework transforms algorithmic harms from technical mysteries into structured legal claims 

that courts can adjudicate using established liability theories and evidentiary standards. This crystallization 

enables consistent application across cases while preserving judicial flexibility for novel scenarios. 

Element 1: Duty arises when algorithmic systems perform mission-critical functions. Plaintiffs establish 

duty by proving algorithms: (a) control safety-critical operations (autonomous vehicles, medical treatment 

recommendations, critical infrastructure), (b) make decisions at scale affecting protected rights (credit, 

employment, housing, education), (c) operate in regulated domains with fiduciary obligations (investment 

advice, legal services, healthcare), or (d) execute functions previously requiring human professional judgment. 

This element admits expert testimony about industry standards—what do reasonable corporations do when 

deploying similar algorithmic systems? Expert witnesses can reference IEEE 7003, ISO/IEC 27001:2022 

algorithmic security controls, or NIST AI Risk Management Framework as evidence of reasonable care 

standards. Defendants failing to meet these standards bear burden of explaining why 
departure was reasonable. 

Element 2: Breach occurs through specific governance failures documented by forensic evidence. 

Plaintiffs prove breach by demonstrating: (a) utter failure to implement algorithmic monitoring systems 

(Caremark Prong 1), (b) conscious failure to respond to red flags about algorithmic problems (Caremark Prong 

2), (c) deployment without adequate testing, validation, or verification, (d) absence of forensic capabilities 

enabling post-incident analysis, or (e) material misrepresentations about algorithmic capabilities or limitations. 

Each failure type corresponds to specific evidence: board minutes showing no algorithmic oversight discussions 

(Prong 1), internal emails documenting known problems without remediation (Prong 2), absence of test 

documentation or failed tests that were ignored (inadequate testing), logs showing no integrity verification 

mechanisms (no forensics), and public statements contradicting internal assessments (misrepresentation). The 

forensic methodologies in Phase 2 generate precisely this evidence—eBPF logs prove what monitoring existed, 

Git archaeology reveals testing practices, and anomaly detection identifies ignored warning signs. 

Element 3: Causation links governance failures to harms through mathematical analysis. Plaintiffs 

establish causation using: (a) formal verification showing safety properties were never proven despite safety- 

critical deployment, (b) probabilistic model checking demonstrating failure inevitability or quantifying elevated 

risk, (c) transfer entropy proving algorithmic decisions causally influenced outcomes, and (qd) statistical 

hypothesis tests showing algorithmic behavior violated legal standards. This element requires expert testimony 

meeting Daubert standards—experts must explain methodologies, demonstrate peer review and publication, 

report known error rates, show adherence to standards, and establish general acceptance. 

Defense experts can challenge causal claims by proposing alternative explanations, identifying confounding 

variables, questioning sample sizes, or disputing model validity. Courts resolve these battles of experts using 

Daubert gatekeeping—excluding methodologies failing scientific validity standards while admitting properly 

conducted analyses even if parties dispute interpretations. 



Element 4: Damages flow from algorithmic harms with computation methodology. Damage calculations 

vary by harm type: financial losses from algorithmic trading errors use market-based valuation methods, 

personal injuries from autonomous vehicle collisions employ standard tort damages, discriminatory denials of 

credit or employment use economic models of lifetime earning losses, and constitutional harms from biased 

criminal justice algorithms may warrant punitive damages. Class action certification becomes available when 

algorithmic systems harm large groups similarly—the algorithm's uniformity of operation often satisfies 

commonality requirements more easily than individual human decisions. Statistical sampling of class members' 

damages with confidence intervals provides computationally feasible estimation for large classes. Defendants 

may raise contributory negligence or intervening cause defenses, but algorithmic systems' opacity often 

precludes plaintiffs from understanding and avoiding risks, weakening such defenses. 

Remedies span equitable relief, compensatory damages, and structural reforms. Courts can order: 

immediate suspension of algorithmic systems failing safety verification, algorithm disgorgement requiring 

deletion of models trained on illegally obtained data (FTC remedy pioneered in Cambridge Analytica), 

appointment of independent monitors conducting ongoing verification audits, mandatory implementation of 

forensic infrastructure and governance structures, disclosure of algorithmic testing and validation results to 

affected parties, and individual liability including clawback of executive compensation and officer bars. The 

Wells Fargo precedent demonstrates courts' willingness to impose severe personal consequences on executives 

($67 million forfeiture, criminal prosecution) when governance failures are systematic. 

Harvard Law School Forum on ... The SEC's record enforcement numbers—$8.2 billion in 2024—signal 

regulators’ commitment to substantial penalties. Cleary Gottlieb) Criminal prosecution under 18 U.S.C. 

§ 1519 remains available when evidence destruction accompanies algorithmic failures, with 20-year maximum 

sentences providing deterrent effect. (Legal Information Institute +3 

Future evolution will extend the framework to emerging algorithmic domains and 

liability theories 

The Sangedha Framework provides foundational architecture that extends naturally to algorithmic domains 

beyond those addressed by current case law and regulation. Three categories warrant particular attention: 

autonomous weapons systems raising novel questions about liability for algorithmic lethality, synthetic media 

and deepfakes creating harm through algorithmic content generation, and quantum-resistant cryptography 

requirements for long-term evidence preservation. 

Autonomous weapons systems present extreme cases of algorithmic lethality. When algorithms make kill 

decisions, governance requirements intensify dramatically. International humanitarian law prohibits weapons 

incapable of distinguishing combatants from civilians—algorithms must provably satisfy this requirement 

through formal verification of targeting logic. The "Martens Clause" demanding weapons remain under 

meaningful human control maps to human-over-the-loop oversight requirements with documented human 

judgment in kill chains. Military organizations adopting the Sangedha Framework would: formally verify 

targeting algorithms satisfy international humanitarian law rules, probabilistically model civilian casualty risks 

under various deployment scenarios, maintain forensically sound logs of all targeting decisions enabling post- 

action review, and establish clear accountability chains from operational commanders through technical 

developers. When autonomous weapons cause civilian casualties, the framework's causal analysis determines 



whether algorithmic failures, inadequate testing, or governance breakdowns bear responsibility. Criminal 

liability under Rome Statute provisions for war crimes may attach to commanders or developers when 

governance failures rise to willful disregard. 

Synthetic media and deepfakes illustrate algorithmic content generation harms. Generative AI systems 

producing photorealistic false content enable defamation, fraud, election interference, and non-consensual 

intimate imagery at unprecedented scale. Liability theories under the Sangedha Framework address: (a) 

deployers who release generative models without adequate safeguards, analogous to distributing tools 

specifically designed for illegal purposes; (b) platforms hosting synthetic content without detection 

mechanisms, potentially violating Section 230's carve-out for intellectual property and federal criminal laws; 

and (c) individual actors using synthetic media to cause specific harms, with generative AI operators potentially 

liable as accomplices. Governance requirements include: provenance tracking via cryptographic signatures 

embedded in generated content (C2PA standard), formal verification that content moderation algorithms detect 

synthetic media with documented false negative rates, statistical monitoring of platform content identifying 

synthetic media concentration, and incident response protocols for rapid takedown when harmful synthetic 

content propagates. The framework's forensic capabilities enable attributing synthetic content to specific 

generator models and operators through statistical fingerprinting of generation artifacts. 

Quantum computing threatens current cryptographic evidence integrity. SHA-256 hash functions and RSA 

signatures securing forensic evidence remain secure against classical computers but face potential vulnerability 

to quantum algorithms. Shor's algorithm, when implemented on sufficient quantum computers, breaks RSA and 

ECC in polynomial time. Current evidence secured only with classical cryptography may be harvested now and 

decrypted later when quantum computers mature. The NIST FIPS 203/204/205 post-quantum cryptography 

standards (ML-KEM, ML-DSA, SLH-DSA) provide quantum-resistant alternatives. The Sangedha Framework 

requires: immediate deployment of hybrid classical+post-quantum cryptography for new evidence, migration of 

existing evidence archives to post-quantum protection before quantum computers threaten classical schemes, 

and documentation enabling courts to assess cryptographic validity as technology evolves. Evidence 

cryptographically secured in 2025 that faces litigation in 2040 must use post-quantum cryptography to ensure 

integrity throughout case lifecycles potentially spanning decades. 

These extensions demonstrate the framework's adaptability. The four-phase structure—establishing duty, 

documenting breach, proving causation, attributing liability—applies regardless of algorithmic domain. The 

forensic methodologies remain constant: eBPF captures system behavior, Merkle trees ensure integrity, Git 

attributes code, memory analysis reveals runtime state, network analysis reconstructs interactions, and statistical 

methods identify patterns. The mathematical verification techniques extend naturally: formal methods prove 

targeting algorithms' properties, probabilistic verification quantifies deepfake detection reliability, and causal 

inference determines responsibility for autonomous weapons' actions. The legal theories remain grounded in 

established doctrines: Caremark oversight duties, SOX internal controls, securities fraud, criminal obstruction, 

and fiduciary duties apply uniformly. This universality enables courts and regulators to apply consistent 

standards as algorithmic systems penetrate new domains, providing predictability while enabling evolution. 



The Sangedha Framework establishes algorithmic negligence attribution as a mature legal-technical discipline 

with clear standards, rigorous methodologies, and predictable outcomes. By integrating four decades of 

computer science research on formal verification with established legal doctrines on corporate oversight, the 

framework transforms opaque algorithmic failures into analyzable governance breakdowns. The technical 

forensics protocols provide courts with evidence meeting FRE 902(14) self-authentication standards. The 

mathematical verification methods survive Daubert challenges through demonstrated testability, peer review, 

known error rates, standardized procedures, and scientific acceptance. The liability theories ground in Supreme 

Court and Delaware precedent rather than untested novel doctrines. 

Corporations implementing this framework gain substantial benefits beyond liability reduction. Formal 

verification identifies bugs before deployment, probabilistic model checking optimizes algorithm parameters, 

causal analysis improves system performance, and statistical monitoring detects problems early. The forensic 

infrastructure enables rapid incident response and root cause analysis. The governance structures improve 

decision-making quality by forcing technical and business stakeholders to explicitly articulate assumptions, 

risks, and mitigations. The organizational integration breaks down silos, creating engineering cultures that value 

robustness over rapid deployment. 

The framework's adoption will proceed through three stages. Early adopters in highly regulated domains—

financial services, healthcare, autonomous vehicles—implement comprehensive frameworks to satisfy 

regulatory examination priorities and reduce massive liability exposures. Industry standards bodies including 

IEEE, ISO, and sector-specific organizations codify frameworks into technical standards and best practices. 

Finally, courts recognize framework compliance as evidence of reasonable care, establishing it as the de facto 

standard of care for algorithmic governance. Within a decade, the question in algorithmic negligence cases will 

shift from "were algorithms involved?" to "did the organization implement Sangedha Framework governance or 

equivalent?" 

The stakes demand nothing less. Algorithmic systems now make billions of consequential decisions annually 

affecting individuals' financial access, employment prospects, criminal justice outcomes, physical safety, and 

constitutional rights. The economic incentives driving algorithmic deployment will not diminish—algorithms 

scale human judgment at near-zero marginal cost. Without robust governance frameworks establishing clear 

accountability, algorithmic harms will proliferate while responsible parties evade liability through complexity 

and opacity. The Sangedha Framework provides the legal-technical infrastructure ensuring that algorithmic 

power remains subject to human accountability and that when algorithms cause harm, responsible parties face 

consequences proportionate to governance failures. This represents not a restriction on beneficial technology 

but the necessary precondition for algorithmic systems' legitimate deployment at scale. 


