The Sangedha Framework: A Causal Forensics Protocol for
Algorithmic Negligence Attribution

A definitive legal-technical doctrine establishing standards for attributing corporate liability when
automated systems cause harm

Corporations deploying algorithmic systems now face unprecedented legal exposure following a convergence of
three critical developments: Delaware courts have extended Caremark oversight duties to mission-critical
automated systems, federal regulators have secured record enforcement actions exceeding $8 billion in 2024,

and technical standards now enable mathematically rigorous causal attribution of algorithmic failures to specific

governance breakdowns. (Commodity Futures Trading Co... ) The Sangedha Framework synthesizes these

developments into a comprehensive protocol that courts, regulators, and corporations can apply to determine

when algorithmic negligence crosses the threshold from operational failure to actionable liability.

This framework matters because existing legal doctrines were developed for human decision-making, not
autonomous systems that make millions of decisions per second. The gap between traditional negligence
standards and algorithmic reality has created profound uncertainty about corporate accountability. Boeing paid
$2.5 billion after its MCAS algorithm contributed to 346 dcaths, yet the legal analysis required novel
applications of board oversight duties. Knight Capital lost $460 million in 45 minutes due to deprecated code,
yet regulatory standards focused primarily on human controls. The proliferation of Al systems
across finance, healthcare, transportation, and criminal justice demands a unified framework that establishes

clear standards of care for algorithmic governance.

The Sangedha Framework provides this clarity through four integrated layers: legal doctrine mapping
algorithmic failures to established liability theories, technical forensics enabling rigorous causal attribution,
mathematical verification proving system properties with courtroom-ready rigor, and executive accountability
mechanisms that pierce the corporate veil when governance failures are systematic. Together, these layers
transform algorithmic negligence from a technical mystery into a legally cognizable claim with clear elements,
burdens of proof, and remedial pathways.

Legal foundations establish algorithmic systems as mission-critical assets requiring
board-level oversight

The Delaware Chancery Court's 2021 Boeing decision fundamentally reshaped corporate law by holding that
boards "utterly failed" their oversight duties when they lacked mechanisms to monitor airplane safety despite it
being "the essence" of Boeing's business. This marked the first time a major court found Caremark
liability for failure to implement monitoring systems for algorithmic operations, specifically Boeing's MCAS
software that could override pilot control. The court rejected the business judgment rule's
protection because directors made no effort to establish board-level safety reporting, waited 10 days after the
first crash to discuss it, and "publicly lied" about their oversight practices.



This extends the 1996 Caremark standard—requiring reasonable information and reporting systems—into the
algorithmic domain with heightened scrutiny. When algorithmic systems perform mission-critical
functions, the 2006 Stone v. Ritter refinement applies: directors face liability either for utterly failing to
implement monitoring systems or for consciously failing to respond to red flags about system failures.
The Boeing court's application demonstrates that algorithmic systems operating autonomously or
making safety-critical decisions automatically trigger the "mission-critical" designation requiring direct board

oversight, not mere management delegation.

The Knight Capital enforcement action established complementary standards for operational controls. When
Knight's trading algorithm executed errant orders causing $460 million in losses over 45 minutes, the SEC
found willful violations of Rule 15¢3-5's technology controls requirements. The firm failed to
implement controls reasonably designed to prevent erroneous orders, lacked capital threshold alerts, and
deployed code without proper testing. Critically, the SEC held that human procedural failures
in algorithm deployment constitute regulatory violations, not mere technical glitches. This precedent
establishes that algorithmic governance requires comprehensive pre-deployment testing, version control

preventing deprecated code activation, automated alerts with proper monitoring, and emergency shutdown

capabilities. ( WilmerHale

The Wells Fargo scandal provides the paradigm for sustained oversight failures creating systemic liability. Over
14 years, executives knew of fraudulent account creation driven by flawed incentive systems but failed to act,
resulting in $3 billion in settlements and unprecedented individual accountability. Former CEO John Stumpf

paid $17.5 million and received a lifetime banking ban; Community Bank head Carrie Tolstedt faced criminal

charges and forfeited $67 million. (U.S. Department of Justice +2)) This establishes that when internal reports

document algorithmic system problems for extended periods, executives and boards must act decisively or face

both clawback of compensation and personal penalties including criminal prosecution.

These precedents collectively establish a legal framework requiring: (1) board-level committees directly
responsible for algorithmic system oversight when such systems are mission-critical; (2) regular board meeting
time allocated to reviewing algorithmic performance, testing, and incidents; (3) mechanisms enabling boards to
receive unfiltered reports of algorithmic failures, not sanitized management summaries; (4) immediate and
thorough investigation of algorithmic failures causing harm; and (5) documentation demonstrating

understanding of algorithmic capabilities, limitations, and risks.
Technical forensics protocols enable tamper-evident reconstruction of algorithmic
decision chains

Modern forensic methodologies provide the evidentiary foundation for algorithmic negligence claims by

establishing precisely what algorithms did, when they did it, who authorized it, and whether adequate controls

existed. (Cyberhunt) (Git Forensics ) This requires integrating six complementary forensic disciplines into a unified
investigative framework meeting Federal Rules of Evidence standards for admissibility.

eBPF-based system observability provides real-time, kernel-level telemetry that captures algorithmic system
behavior with forensic-grade integrity. Operating within the Linux kernel itself, eBPF

programs monitor system calls, file access, network connections, and process execution with sub-millisecond



precision and negligible overhead below 5% CPU usage. This creates comprehensive audit trails showing
exactly which processes accessed what data, when, and with what result. Unlike user-space logging that
attackers can disable or manipulate, eBPF operates in kernel space with memory access restrictions that prevent
tampering. For algorithmic negligence investigations, eBPF captures the complete execution
environment: which version of algorithm code ran, what input data it received, what decisions it made, and what

system resources it consumed. Tools like Falco and Tracee leverage eBPF for production-grade forensic
telemetry that meets chain-of-custody requirements for legal proceedings.

Merkle tree architectures transform these logs into tamper-evident evidence through cryptographic hash chains.
Each log entry receives a SHA-256 hash incorporated into a binary tree structure where any
modification to historical entries changes the root hash detectably. This provides mathematical proof
that logs remain unaltered from collection through courtroom presentation. Certificate Transparency,

Google's transparency log system protecting SSL certificates, demonstrates this approach's legal viability—

courts accept CT logs as self-authenticating evidence under FRE 902(14). (swtch) (Research!Rsc ) For algorithmic

systems, Merkle trees enable proof of inclusion (showing a specific algorithmic decision existed in the log) and
proof of consistency (demonstrating current logs contain all previous entries unmodified). The

constant-time append operations and logarithmic-time verification make this practical even for systems

generating millions of log entries daily.

Git forensics provides attribution of algorithmic code to specific developers with cryptographic certainty. Every
commit includes SHA-256 hashes of content, author metadata with timestamps, and optional GPG signatures
preventing repudiation. The distributed nature of Git means multiple independent copies of
repository history exist, making history rewriting detectable. For negligence analysis, Git
archaeology identifies: who introduced specific code sections, when testing occurred, what code review
processes were followed, whether dangerous code was flagged during review, and whether known-problematic

code was reverted then reintroduced. The ability to use to binary-search through thousands
of commits and identify the exact change that introduced a bug provides powerful causation evidence.

Memory forensics captures the runtime state of algorithmic systems through RAM dumps analyzed with the

Volatility Framework. (National Institute of Standards ... ) This reveals: loaded algorithm code and libraries, decrypted

data existing only in memory, active network connections, process relationships showing whether malware
infected algorithmic processes, and injected code indicating compromise. While volatile by nature, proper
collection procedures using hardware write-blockers and immediate cryptographic hashing establish integrity.
Memory forensics proves critical for determining whether algorithmic failures resulted from legitimate code

errors, malicious compromise, or unauthorized modifications not reflected in source repositories.

Network packet analysis reconstructs the distributed execution of algorithmic systems by capturing all network

traffic to and from algorithmic infrastructure. (National Institute of Standards ... ) Wireshark and similar tools provide

microsecond-precision timestamps synchronized to NTP sources, enabling precise timeline reconstruction. For
algorithmic trading systems, packet captures prove exactly when orders transmitted, what market data the
algorithm received, and whether the system exhibited anomalous network behavior indicating compromise. The

Supreme Court's Daubert standard requires that forensic methodologies have known error rates, standardized



procedures, and peer review— (Justia ) (Annual Reviews )packet analysis meets these requirements through decades
of established practice and NIST standardization.

Statistical anomaly detection identifies algorithmic behavior deviations from established baselines using
machine learning on system logs. Techniques like isolation forests, autoencoders, and LSTM networks trained
on normal operation data flag anomalous patterns requiring investigation. The SEC's National
Exam Program Analytics Office uses similar methods to detect irregular trading patterns. For negligence
attribution, anomaly detection answers critical questions: Did algorithmic behavior change after a specific code
deployment? Do certain algorithmic decisions show statistical bias indicating discrimination? Did the system
exhibit warning signs before catastrophic failure? Critically, these methods must document false

positive/negative rates and validation procedures to meet Daubert's requirements for expert testimony about
analytical methodologies.

Mathematical verification provides courtroom-ready proofs of algorithmic
properties and failures

The Sangedha Framework's mathematical layer transforms technical claims about algorithms into rigorous
proofs meeting scientific evidence standards. This layer draws from formal methods developed over four
decades in computer science, now mature enough for legal applications requiring certainty beyond statistical

confidence.

Formal verification using proof assistants like Coq, Isabelle, and TLA+ establishes algorithmic properties with
mathematical certainty. CompCert, a verified C compiler proven correct in Coq through 200,000+ lines of
proof, demonstrates this approach's maturity. The seL.4 microkernel, verified in Isabelle, proves that its

implementation correctly enforces security policies—if sel4 fails, the proof identifies an error in the formal

specification, not the implementation. (Wikipedia ) (chlipala ) For algorithmic negligence, formal verification

addresses critical questions: Does an algorithm provably implement stated requirements? Do safety properties
hold under all possible inputs? Can the algorithm enter unsafe states? The proofs themselves become evidence,

with small trusted computing bases that experts can verify independently.

The key advantage over testing lies in completeness. Testing explores specific scenarios while formal
verification proves properties hold for all possible executions. Amazon Web Services relies on TLA+ to
verify distributed systems like S3 and DynamoDB, finding serious bugs that testing missed. For legal purposes,
formal verification establishes either that safety properties were proven (indicating due diligence) or that no
verification occurred despite safety-critical operations (indicating negligence). The Daubert factors strongly
favor formal methods: they are testable (proofs can be checked mechanically), peer-reviewed (published in
venues like CAV and POPL), have known limitations (decidability boundaries are well-understood), follow
standardized procedures, and enjoy acceptance in the computer science research community.

Probabilistic model checking quantifies risks in algorithmic systems operating under uncertainty. Tools like
PRISM and Storm model algorithms as Markov Decision Processes and compute exact probabilities of failures
or expected time to catastrophic events. For autonomous vehicles, model checking can prove
statements like "the probability of collision given detected obstacle is less than 10~° per hour" or identify that no



such guarantee exists. The mathematics underlying probabilistic model checking—value iteration, policy
synthesis, reachability analysis—enables counterfactual reasoning: Would alternative algorithmic strategies

have prevented the observed failure?

The Boeing MCAS failure illustrates where probabilistic verification could have identified risks. MCAS relied

on a single angle-of-attack sensor without redundancy, and its repeated nose-down commands overwhelmed

pilot control. (Delaware Courts ) (Newsweek ) Model checking of this architecture would have revealed: unacceptable

probability of catastrophic failure given known sensor failure rates, existence of alternative policies (sensor
fusion, pilot override) with orders of magnitude better safety guarantees, and violation of safety properties
under realistic fault scenarios. Boeing's failure to conduct such analysis despite MCAS being safety-critical
demonstrates the negligence standard: when algorithms control life-safety systems, probabilistic verification

becomes part of reasonable care.

Temporal logic provides the specification language for expressing safety requirements formally. Linear
Temporal Logic captures properties like "if the algorithm detects an obstacle, emergency braking must activate
within 100 milliseconds"—expressed as G(obstacle detected — F<100ms emergency_brake). Computation
Tree Logic handles branching futures: "after any system state, it remains possible to return to a safe state"—
expressed as AG(EF safe_state). These specifications transform natural language regulatory
requirements into mathematically precise properties that model checkers can verify algorithmically. The SEC's
proposed Predictive Analytics rule requiring investment advisers to eliminate conflicts of interest could be

expressed in temporal logic, enabling automated verification of compliance.

Causal inference using transfer entropy and Granger causality establishes directed causal relationships between
algorithmic inputs and outputs. Transfer entropy T_X—'Y measures information flow from variable X to

variable Y, quantifying how much knowing X's past improves prediction of Y's future beyond Y's own history.

This distinguishes mere correlation from causation. (Wikipedia ) (arXiv) For algorithmic bias analysis, transfer

entropy can prove whether protected characteristics like race causally influence algorithmic decisions, or
whether correlations arise spuriously from confounders. Granger causality, proven equivalent to transfer entropy

for Gaussian processes, provides a computationally lighter alternative suitable for large-scale log analysis.

The legal significance lies in moving from "algorithm A was running when harm B occurred" to "algorithmic
decision A caused harm B with quantified confidence intervals." Judea Pearl's do-calculus framework enables
counterfactual analysis: "If the algorithm had not taken action A, would harm B have occurred?"

These causal methods require careful attention to confounders and hidden variables, but when
properly applied provide scientific rigor meeting Daubert standards. The landmark Daubert decision itself
involved causal claims about birth defects— (Wikipedia +2 )algorithmic causality analysis uses fundamentally

similar statistical methodologies now with decades of peer review in epidemiology and econometrics.

Statistical hypothesis testing establishes negligence through formal tests comparing algorithmic behavior to
legal standards. For disparate impact claims under anti-discrimination law, two-proportion z-tests determine
whether algorithms grant favorable outcomes to protected groups at statistically different rates.

Cohen's d effect sizes quantify the magnitude of discrimination, with established conventions (d=0.2 small,

d=0.5 medium, d=0.8 large) enabling courts to assess materiality. Power analysis ensures adequate sample sizes



—underpowered studies that fail to detect discrimination due to insufficient data do not exculpate defendants.

For legal proceedings, hypothesis testing must address multiple comparisons carefully. Testing 100 algorithmic
fairness metrics at 0=0.05 yields five false positives on average. Bonferroni correction (a'=a/k) or
Benjamini-Hochberg false discovery rate control maintains statistical validity. Courts applying Daubert
scrutinize whether experts properly controlled Type I error inflation. The legal standard of proof varies by
context—criminal prosecution requires proof beyond reasonable doubt (approximately 95-99% confidence),
while civil cases use preponderance of evidence (>50% probability). Properly conducted statistical
analysis with reported confidence intervals enables courts to assess whether evidence meets the applicable

burden.

The integrated framework establishes clear liability standards for algorithmic
governance failures

The Sangedha Framework synthesizes legal precedents, technical forensics, and mathematical verification into a
unified protocol for algorithmic negligence attribution. This integration occurs across four sequential phases: (1)
establishing duty through mission-critical designation, (2) documenting breach through forensic evidence of
governance failures, (3) proving causation through mathematical analysis linking failures to harms, and (4)

attributing individual liability through executive accountability mechanisms.

Phase 1 establishes that algorithmic systems performing core business functions trigger enhanced
oversight duties. The mission-critical standard derives from Boeing's holding that algorithmic systems
controlling safety-critical functions require direct board oversight. This extends to: algorithmic trading systems
controlling capital deployment at financial institutions, machine learning models making credit decisions
affecting consumer access to capital, recommendation algorithms determining content exposure on platforms
with public safety implications, and autonomous vehicle control systems. When algorithms make decisions
previously requiring human judgment in regulated domains, they automatically qualify as mission-critical. This
designation imposes five specific requirements: dedicated board committee with algorithmic oversight
responsibility, quarterly review of algorithmic performance metrics and incident reports, direct reporting
channels from technical teams to board (not filtered through management), documented understanding of

algorithmic capabilities and limitations, and immediate board notification of material algorithmic failures.

Phase 2 documents governance failures through forensic evidence collection and analysis. Investigators
deploy the six forensic methodologies in parallel: eBPF telemetry captures real-time system behavior, Merkle
tree logs provide tamper-evident audit trails, Git analysis attributes code to specific developers and identifies
testing gaps, memory forensics reveals runtime state and potential compromises, network analysis reconstructs
distributed system interactions, and statistical anomaly detection flags deviations from normal behavior.

Each methodology generates specific evidence types: eBPF shows which algorithm versions
executed and what decisions they made, Merkle trees prove log integrity with cryptographic certainty, Git
commits demonstrate whether code review processes identified risks, memory dumps reveal whether malware
compromised algorithmic systems, packet captures establish precise timing of distributed system

communications, and anomaly detection identifies suspicious behavioral changes. The integration of multiple



evidence sources enables triangulation—convergent evidence from independent methodologies strengthens

causal claims while divergent evidence flags investigation gaps.

Phase 3 establishes causation through mathematical analysis connecting governance failures to observed
harms. This employs four complementary techniques: formal verification reveals whether safety properties
were proven before deployment, probabilistic model checking quantifies failure probabilities and identifies
safer alternative strategies, causal inference using transfer entropy establishes directed causation from
algorithmic decisions to harms, and statistical hypothesis testing determines whether algorithmic behavior
violates legal standards with quantified confidence. For example, investigating an autonomous vehicle collision
would: check whether safety properties were formally verified (establishing due diligence or its absence), use
probabilistic model checking to compute collision probability given system architecture and prove whether
alternative designs would have prevented the incident, apply transfer entropy to determine which system
components (perception, planning, control) causally contributed most to the collision, and conduct statistical
tests comparing the system's collision rate to regulatory safety standards or human baseline performance. The
mathematical rigor of these methods enables them to survive Daubert challenges—they are testable, peer-

reviewed, have known error rates, follow standardized procedures, and are generally accepted in relevant

scientific communities. ( Leppard Law +3

Phase 4 attributes individual liability to executives who failed oversight duties. Multiple liability theories
apply depending on specific failures. Sarbanes-Oxley Section 302 imposes personal certification duties on
CEOs and CFOs for internal controls—algorithmic systems affecting financial reporting fall within this scope.
Section 404 requires management to assess control effectiveness annually, extending to algorithmic controls.
Dodd-Frank's mandatory clawback provisions require recovery of executive compensation following accounting
restatements triggered by algorithmic errors, regardless of fault. Securities fraud claims under Rule
10b-5 attach when executives make material misrepresentations about algorithmic capabilities while knowing of
system deficiencies—the SolarWinds case established this extends to technical officers like CISOs.
Criminal obstruction charges under 18 U.S.C. § 1519 apply when executives conceal algorithmic failures during

regulatory investigations, as demonstrated by the conviction of Uber's Chief Security Officer for concealing a

data breach. (Department of Justice +4) State law fiduciary duty claims provide an additional liability path—both

over-reliance on algorithmic decisions without understanding (abdication of duty) and under-utilization of

available algorithmic tools (falling behind industry standards) can constitute breaches.

This four-phase structure provides clarity for corporations implementing algorithmic governance. The
requirements are specific and actionable: identify mission-critical algorithmic systems through objective criteria
(safety impact, regulatory significance, scale of decisions), implement required oversight structures (board
committees, reporting mechanisms, incident response protocols), deploy forensic capabilities proactively (eBPF
monitoring, Merkle tree logging, comprehensive version control, statistical baselines), and document
verification efforts (formal verification attempts, probabilistic model checking results, causal analysis of
deployed systems, statistical validation of fairness properties). Corporations that implement these measures
establish strong evidence of reasonable care, while those lacking such documentation face substantial liability

exposure.



Regulatory convergence across multiple jurisdictions reinforces the framework's
core principles

The Sangedha Framework aligns with emerging regulatory requirements across the European Union, United
Kingdom, United States, and Singapore, indicating global convergence toward specific algorithmic governance
standards. This regulatory alignment strengthens the framework's legitimacy and provides corporations with

clear compliance pathways.

The EU Al Act, effective August 2024 with staged implementation through 2026, mandates comprehensive risk
management systems for high-risk Al under Article 9. (White & Case LLP ) This requires continuous iterative risk

assessment throughout the Al lifecycle, evaluation under both intended use and reasonably foreseeable misuse

scenarios, and integration with post-market monitoring. (EU Artificial Intelligence Act ) (artificialintelligenceact ) Article

17's quality management system requirements demand documentation of design choices, model selection
decisions, and risk mitigation measures—directly supporting forensic reconstruction of algorithmic governance.
The enforcement mechanism imposes fines up to €35 million or 7% of global revenue for prohibited
practices, creating substantial incentives for robust governance. The framework's technical forensics
protocols enable companies to demonstrate compliance with Article 9's risk management requirements through

documented testing, validation, and monitoring.

The UK Online Safety Act, with illegal content duties enforceable from March 2025, requires platforms to

assess how algorithms impact harmful content exposure. (Kennedys Law LLP ) Regulator Ofcom can impose fines

up to £18 million or 10% of worldwide revenue and bring criminal charges against senior managers for failures.

(Kennedys Law LLP ) (www ) The Act's risk assessment requirements align precisely with the Sangedha Framework's

Phase 1 mission-critical designation—companies must identify where algorithmic content distribution creates
safety risks and implement controls. The framework's statistical anomaly detection methodologies enable
platforms to monitor algorithmic behavior for concerning patterns, while formal verification can prove content

moderation algorithms satisfy safety properties.

Singapore's Model Al Governance Framework, updated in 2020, establishes an accountability-based approach
emphasizing explainability, transparency, and fairness. The framework mandates human oversight at
appropriate levels (human-in-the-loop, human-over-the-loop, or human-out-of-the-loop) based on risk
assessment. Its algorithm requirements—explainability, robustness, regular tuning, traceability,
reproducibility, and auditability—map directly to the Sangedha Framework's technical forensics requirements.
The complementary Al Verify testing framework provides standardized tests for 11 principles,
enabling companies to demonstrate governance effectiveness. While Singapore's framework remains
voluntary, courts increasingly reference it when assessing reasonable care standards under the Personal Data

Protection Act.

US regulatory enforcement has intensified dramatically, with the SEC's fiscal year 2024 producing record $8.2
billion in financial remedies and 124 officer and director bars. The SEC's enforcement actions

against "Al washing"—false claims about Al capabilities—establish that existing securities laws fully apply to

algorithmic systems with no technology exception. (Wealth Management ) (White & Case LLP ) The March 2024 actions
against Delphia and Global Predictions, settling for $225,000 and $175,000 respectively for false Al claims,




demonstrate regulators' willingness to pursue relatively modest violations to establish precedents.
The SEC's 2025 Examination Priorities explicitly target Al use in investment advice, trading,
and back-office operations. ( White & Case LLP ) The CFTC's Electronic Trading Risk Principles, proposed in 2020,

require prevention, detection, and mitigation controls for algorithmic trading—directly paralleling the Sangedha

Framework's forensic capabilities. (Akin Gump Strauss Hauer & F.... ) Pre-trade risk controls (order frequency limits,

size parameters, price collars, self-trade prevention) align with formal verification's ability to prove algorithms

respect bounds.

IEEE Standard 7003-2024 on algorithmic bias provides technical specifications that integrate seamlessly with

the framework's mathematical verification layer. (IEEE Standards Group ) The standard requires validation dataset

criteria ensuring representativeness, application boundary documentation preventing out-of-scope use, user
expectation management, and bias profile development balancing productive and harmful bias. These
requirements map to: statistical hypothesis testing for bias detection (validation datasets), formal specification
of algorithm scope (application boundaries via temporal logic), and causal inference identifying discriminatory
pathways (bias profiling through transfer entropy). Organizations can cite IEEE 7003 compliance as evidence of

reasonable care while leveraging the Sangedha Framework's verification methods to demonstrate actual

compliance rather than aspirational policy statements. (IEEE Standards Group )

This regulatory convergence creates powerful network effects. Companies implementing the Sangedha
Framework to comply with EU Al Act requirements simultaneously satisfy UK Online Safety Act obligations,
SEC examination priorities, and IEEE technical standards. The framework functions as a unified compliance
architecture addressing multiple jurisdictions' requirements through integrated governance rather than
jurisdiction-specific point solutions. Multinational corporations benefit from standardized forensic
infrastructure, verification methodologies, and documentation that demonstrate compliance across regulatory
regimes. As algorithmic systems increasingly operate globally, this unified framework reduces compliance costs

while providing superior governance compared to fragmented approaches.

Implementation requires organizational integration across legal, technical, and
executive functions

Successful deployment of the Sangedha Framework requires corporations to bridge historically separate
organizational silos, creating integrated teams combining legal expertise, technical capabilities, and executive

oversight. This organizational transformation proves as critical as the technical methodologies themselves.

Legal teams must develop technical literacy sufficient to specify algorithmic requirements in temporal
logic and assess verification evidence. This does not require lawyers to become computer scientists, but
demands familiarity with formal specification concepts, probabilistic reasoning, and causal inference
frameworks. Progressive legal departments are hiring "legal engineers" with computer science backgrounds
who translate regulatory requirements into formal specifications that verification tools can process. For
example, GDPR's right to deletion within 30 days becomes the temporal logic formula G(deletion _request —

F<30days data_deleted), which PRISM can model check against data retention system specifications.

(prismmodelchecker ) Similarly, fair lending requirements prohibiting discrimination become statistical hypothesis

tests comparing approval rates across protected groups with documented significance levels and effect sizes.



Legal teams must also understand chain of custody requirements for digital forensic evidence, ensuring
technical teams collect evidence meeting FRE 902(14) standards for self-authentication.

Technical teams must adopt forensic-grade development practices treating all systems as potentially
subject to legal scrutiny. This shifts software development from optimizing purely for performance and
features toward prioritizing auditability, explainability, and verifiability. Concretely, this means: implementing
eBPF-based observability from initial deployment rather than adding it post-incident, structuring all logs as
Merkle trees with cryptographic integrity guarantees, requiring GPG-signed Git commits with detailed
messages explaining changes, conducting formal verification for safety-critical components with documented
proof attempts, maintaining comprehensive test suites with coverage metrics and documented test case selection
rationale, and performing regular bias audits using statistical methods with published methodologies. Technical
teams must recognize that "it works in testing" provides insufficient governance—they must prove properties

hold through verification or document why verification is infeasible.

Executive teams must establish governance structures explicitly allocating algorithmic oversight
responsibilities. The board must create a dedicated Technology Risk Committee (or expand existing Risk
Committee mandates) with: at least one director with computer science or Al expertise, quarterly meetings
reviewing algorithmic incident reports and verification results, direct access to technical teams without
management filtering, authority to retain independent technical auditors, and explicit charter covering
algorithmic systems performing mission-critical functions. The CEO must designate a Chief Al Officer or Chief
Algorithm Officer at C-suite level with: authority to halt deployments failing verification requirements,
responsibility for enterprise-wide algorithmic governance policy, budget for verification tools and external
audits, and direct reporting line to board Technology Risk Committee. The CFO must ensure internal controls
under SOX 404 explicitly cover algorithmic systems affecting financial reporting, with documented testing

procedures and control deficiency escalation paths.

Cross-functional Algorithmic Review Boards must approve high-risk system deployments. These boards
should include: legal counsel assessing regulatory compliance and liability risk, technical architects reviewing
verification evidence and forensic readiness, ethicists evaluating fairness and bias implications, business owners
articulating value and accepting residual risks, and security teams confirming systems resist tampering and
maintain evidence integrity. The board reviews documentation packages including: formal specifications of
safety properties, probabilistic model checking results quantifying failure risks, statistical bias analysis with
confidence intervals, verification attempts (successful proofs or documented infeasibility), incident response
and forensic readiness plans, and executive accountability and compensation clawback triggers. Only systems
passing this review with documented board approval should enter production.

This organizational integration enables rapid, effective response when algorithmic incidents occur. Pre-deployed
forensic infrastructure immediately captures evidence. Legal teams understand what evidence exists and how to
preserve it. Technical teams can conduct causal analysis and verification while maintaining chain of custody.
Executives have clear escalation protocols and authority to make decisions. The alternative—discovering after
an incident that forensic capabilities don't exist, evidence was overwritten, technical teams lack causal analysis

skills, and accountability structures are ambiguous—exposes corporations to massive liability.



The framework establishes algorithmic negligence as a cognizable claim with clear
elements and remedies

The Sangedha Framework transforms algorithmic harms from technical mysteries into structured legal claims
that courts can adjudicate using established liability theories and evidentiary standards. This crystallization

enables consistent application across cases while preserving judicial flexibility for novel scenarios.

Element 1: Duty arises when algorithmic systems perform mission-critical functions. Plaintiffs establish
duty by proving algorithms: (a) control safety-critical operations (autonomous vehicles, medical treatment
recommendations, critical infrastructure), (b) make decisions at scale affecting protected rights (credit,
employment, housing, education), (¢) operate in regulated domains with fiduciary obligations (investment
advice, legal services, healthcare), or (d) execute functions previously requiring human professional judgment.
This element admits expert testimony about industry standards—what do reasonable corporations do when
deploying similar algorithmic systems? Expert witnesses can reference IEEE 7003, ISO/IEC 27001:2022

algorithmic security controls, or NIST AI Risk Management Framework as evidence of reasonable care

standards. (IEEE Standards Group ) Defendants failing to meet these standards bear burden of explaining why

departure was reasonable.

Element 2: Breach occurs through specific governance failures documented by forensic evidence.
Plaintiffs prove breach by demonstrating: (a) utter failure to implement algorithmic monitoring systems
(Caremark Prong 1), (b) conscious failure to respond to red flags about algorithmic problems (Caremark Prong
2), (¢) deployment without adequate testing, validation, or verification, (d) absence of forensic capabilities
enabling post-incident analysis, or (e) material misrepresentations about algorithmic capabilities or limitations.
Each failure type corresponds to specific evidence: board minutes showing no algorithmic oversight discussions
(Prong 1), internal emails documenting known problems without remediation (Prong 2), absence of test
documentation or failed tests that were ignored (inadequate testing), logs showing no integrity verification
mechanisms (no forensics), and public statements contradicting internal assessments (misrepresentation). The
forensic methodologies in Phase 2 generate precisely this evidence—eBPF logs prove what monitoring existed,

Git archaeology reveals testing practices, and anomaly detection identifies ignored warning signs.

Element 3: Causation links governance failures to harms through mathematical analysis. Plaintiffs
establish causation using: (a) formal verification showing safety properties were never proven despite safety-
critical deployment, (b) probabilistic model checking demonstrating failure inevitability or quantifying elevated
risk, (¢) transfer entropy proving algorithmic decisions causally influenced outcomes, and (d) statistical
hypothesis tests showing algorithmic behavior violated legal standards. This element requires expert testimony
meeting Daubert standards—experts must explain methodologies, demonstrate peer review and publication,
report known error rates, show adherence to standards, and establish general acceptance.
Defense experts can challenge causal claims by proposing alternative explanations, identifying confounding
variables, questioning sample sizes, or disputing model validity. Courts resolve these battles of experts using
Daubert gatekeeping—excluding methodologies failing scientific validity standards while admitting properly

conducted analyses even if parties dispute interpretations.



Element 4: Damages flow from algorithmic harms with computation methodology. Damage calculations
vary by harm type: financial losses from algorithmic trading errors use market-based valuation methods,
personal injuries from autonomous vehicle collisions employ standard tort damages, discriminatory denials of
credit or employment use economic models of lifetime earning losses, and constitutional harms from biased
criminal justice algorithms may warrant punitive damages. Class action certification becomes available when
algorithmic systems harm large groups similarly—the algorithm's uniformity of operation often satisfies
commonality requirements more easily than individual human decisions. Statistical sampling of class members'
damages with confidence intervals provides computationally feasible estimation for large classes. Defendants
may raise contributory negligence or intervening cause defenses, but algorithmic systems' opacity often

precludes plaintiffs from understanding and avoiding risks, weakening such defenses.

Remedies span equitable relief, compensatory damages, and structural reforms. Courts can order:
immediate suspension of algorithmic systems failing safety verification, algorithm disgorgement requiring
deletion of models trained on illegally obtained data (FTC remedy pioneered in Cambridge Analytica),
appointment of independent monitors conducting ongoing verification audits, mandatory implementation of
forensic infrastructure and governance structures, disclosure of algorithmic testing and validation results to
affected parties, and individual liability including clawback of executive compensation and officer bars. The
Wells Fargo precedent demonstrates courts' willingness to impose severe personal consequences on executives

($67 million forfeiture, criminal prosecution) when governance failures are systematic.

(Harvard Law School Forum on ... ) (Congress.gov ) The SEC's record enforcement numbers—$8.2 billion in 2024—signal

regulators' commitment to substantial penalties. (Secretariat ) (Cleary Gottlieb ) Criminal prosecution under 18 U.S.C.

§ 1519 remains available when evidence destruction accompanies algorithmic failures, with 20-year maximum

sentences providing deterrent effect. (Legal Information Institute +3 )

Future evolution will extend the framework to emerging algorithmic domains and
liability theories

The Sangedha Framework provides foundational architecture that extends naturally to algorithmic domains
beyond those addressed by current case law and regulation. Three categories warrant particular attention:
autonomous weapons systems raising novel questions about liability for algorithmic lethality, synthetic media
and deepfakes creating harm through algorithmic content generation, and quantum-resistant cryptography

requirements for long-term evidence preservation.

Autonomous weapons systems present extreme cases of algorithmic lethality. When algorithms make kill
decisions, governance requirements intensify dramatically. International humanitarian law prohibits weapons
incapable of distinguishing combatants from civilians—algorithms must provably satisfy this requirement
through formal verification of targeting logic. The "Martens Clause" demanding weapons remain under
meaningful human control maps to human-over-the-loop oversight requirements with documented human
judgment in kill chains. Military organizations adopting the Sangedha Framework would: formally verify
targeting algorithms satisfy international humanitarian law rules, probabilistically model civilian casualty risks
under various deployment scenarios, maintain forensically sound logs of all targeting decisions enabling post-
action review, and establish clear accountability chains from operational commanders through technical

developers. When autonomous weapons cause civilian casualties, the framework's causal analysis determines



whether algorithmic failures, inadequate testing, or governance breakdowns bear responsibility. Criminal
liability under Rome Statute provisions for war crimes may attach to commanders or developers when

governance failures rise to willful disregard.

Synthetic media and deepfakes illustrate algorithmic content generation harms. Generative Al systems
producing photorealistic false content enable defamation, fraud, election interference, and non-consensual
intimate imagery at unprecedented scale. Liability theories under the Sangedha Framework address: (a)
deployers who release generative models without adequate safeguards, analogous to distributing tools
specifically designed for illegal purposes; (b) platforms hosting synthetic content without detection
mechanisms, potentially violating Section 230's carve-out for intellectual property and federal criminal laws;
and (c¢) individual actors using synthetic media to cause specific harms, with generative Al operators potentially
liable as accomplices. Governance requirements include: provenance tracking via cryptographic signatures
embedded in generated content (C2PA standard), formal verification that content moderation algorithms detect
synthetic media with documented false negative rates, statistical monitoring of platform content identifying
synthetic media concentration, and incident response protocols for rapid takedown when harmful synthetic
content propagates. The framework's forensic capabilities enable attributing synthetic content to specific

generator models and operators through statistical fingerprinting of generation artifacts.

Quantum computing threatens current cryptographic evidence integrity. SHA-256 hash functions and RSA
signatures securing forensic evidence remain secure against classical computers but face potential vulnerability
to quantum algorithms. Shor's algorithm, when implemented on sufficient quantum computers, breaks RSA and
ECC in polynomial time. Current evidence secured only with classical cryptography may be harvested now and
decrypted later when quantum computers mature. The NIST FIPS 203/204/205 post-quantum cryptography
standards (ML-KEM, ML-DSA, SLH-DSA) provide quantum-resistant alternatives. The Sangedha Framework
requires: immediate deployment of hybrid classical+post-quantum cryptography for new evidence, migration of
existing evidence archives to post-quantum protection before quantum computers threaten classical schemes,
and documentation enabling courts to assess cryptographic validity as technology evolves. Evidence
cryptographically secured in 2025 that faces litigation in 2040 must use post-quantum cryptography to ensure

integrity throughout case lifecycles potentially spanning decades.

These extensions demonstrate the framework's adaptability. The four-phase structure—establishing duty,
documenting breach, proving causation, attributing liability—applies regardless of algorithmic domain. The
forensic methodologies remain constant: eBPF captures system behavior, Merkle trees ensure integrity, Git
attributes code, memory analysis reveals runtime state, network analysis reconstructs interactions, and statistical
methods identify patterns. The mathematical verification techniques extend naturally: formal methods prove
targeting algorithms' properties, probabilistic verification quantifies deepfake detection reliability, and causal
inference determines responsibility for autonomous weapons' actions. The legal theories remain grounded in
established doctrines: Caremark oversight duties, SOX internal controls, securities fraud, criminal obstruction,
and fiduciary duties apply uniformly. This universality enables courts and regulators to apply consistent

standards as algorithmic systems penetrate new domains, providing predictability while enabling evolution.




The Sangedha Framework establishes algorithmic negligence attribution as a mature legal-technical discipline
with clear standards, rigorous methodologies, and predictable outcomes. By integrating four decades of
computer science research on formal verification with established legal doctrines on corporate oversight, the
framework transforms opaque algorithmic failures into analyzable governance breakdowns. The technical
forensics protocols provide courts with evidence meeting FRE 902(14) self-authentication standards. The
mathematical verification methods survive Daubert challenges through demonstrated testability, peer review,
known error rates, standardized procedures, and scientific acceptance. The liability theories ground in Supreme

Court and Delaware precedent rather than untested novel doctrines.

Corporations implementing this framework gain substantial benefits beyond liability reduction. Formal
verification identifies bugs before deployment, probabilistic model checking optimizes algorithm parameters,
causal analysis improves system performance, and statistical monitoring detects problems early. The forensic
infrastructure enables rapid incident response and root cause analysis. The governance structures improve
decision-making quality by forcing technical and business stakeholders to explicitly articulate assumptions,
risks, and mitigations. The organizational integration breaks down silos, creating engineering cultures that value

robustness over rapid deployment.

The framework's adoption will proceed through three stages. Early adopters in highly regulated domains—
financial services, healthcare, autonomous vehicles—implement comprehensive frameworks to satisfy
regulatory examination priorities and reduce massive liability exposures. Industry standards bodies including
IEEE, ISO, and sector-specific organizations codify frameworks into technical standards and best practices.
Finally, courts recognize framework compliance as evidence of reasonable care, establishing it as the de facto
standard of care for algorithmic governance. Within a decade, the question in algorithmic negligence cases will
shift from "were algorithms involved?" to "did the organization implement Sangedha Framework governance or

equivalent?"

The stakes demand nothing less. Algorithmic systems now make billions of consequential decisions annually
affecting individuals' financial access, employment prospects, criminal justice outcomes, physical safety, and
constitutional rights. The economic incentives driving algorithmic deployment will not diminish—algorithms
scale human judgment at near-zero marginal cost. Without robust governance frameworks establishing clear
accountability, algorithmic harms will proliferate while responsible parties evade liability through complexity
and opacity. The Sangedha Framework provides the legal-technical infrastructure ensuring that algorithmic
power remains subject to human accountability and that when algorithms cause harm, responsible parties face
consequences proportionate to governance failures. This represents not a restriction on beneficial technology

but the necessary precondition for algorithmic systems' legitimate deployment at scale.



