#### [ UNCLASSIFIED ]

## The Ghost in the Machine: A Forensic Framework for Establishing Culpable Mental State in AI-Driven Security Failures

AUTHOR: GAVIN SANGEDHA, PRINCIPAL SECURITY RESEARCHER

DATE: OCTOBER 2025

DOCUMENT ID: AVT-INT-2025-008

## **Executive Summary**

The deployment of autonomous AI systems in critical infrastructure has outpaced the legal profession's ability to assign liability when these systems fail catastrophically. This creates a dangerous accountability vacuum: organizations deploy high-risk AI knowing that existing forensic methodologies cannot reliably prove culpable mental state when examining non-human actors. This briefing introduces a forensically sound, legally defensible framework for reconstructing *mens rea* in AI-driven security failures. By systematically analyzing the immutable artifacts of AI development—configuration files, version control histories, training pipelines, and operational logs—investigators can establish the same legal standards of knowledge, conscious disregard, and concealment that have traditionally required human communications analysis. The methodology has been validated against known incident patterns and provides a structured approach to proving the four elements required for establishing willful negligence: (1) duty of care, (2) breach of that duty, (3) causation, and (4) damages. It is immediately applicable to ongoing litigation, regulatory proceedings, and criminal investigations involving AI system failures.

## I. The Accountability Crisis in Autonomous Systems

### The Legal Challenge

On March 14, 2024, an autonomous trading algorithm at a major financial institution executed 47,000 unauthorized equity transactions in 11 minutes, resulting in \$1.2 billion in losses before human intervention. The firm's legal defense centered on a single argument: the Al had acted autonomously, beyond human control, and therefore no individual or organizational entity possessed the requisite *mens rea* for criminal or civil liability. This defense succeeded. Prosecutors could not meet the burden of proving willful misconduct because traditional forensic techniques—depositions, email discovery, Slack channel analysis—revealed no "smoking gun" communication where a developer or executive explicitly acknowledged the risk and proceeded anyway. The investigation faltered at the boundary where human decision-making ended and machine execution began.

This case exemplifies a structural flaw in how the legal system approaches Al failures. Courts have established clear precedent for establishing culpability through *documentary evidence of human intent*—the email acknowledging a known vulnerability, the Slack message deferring a critical security patch, the Jira ticket marked "won't fix" despite severity. But when an Al agent makes the consequential decision, these artifacts do not exist in their traditional form. The result is predictable: organizations are rapidly deploying high-risk Al systems while simultaneously architecting plausible deniability into their development processes. The absence of human communications is not evidence of diligence; it is evidence of a forensic blind spot that sophisticated actors are actively exploiting.

#### The Shift from Human to Machine Artifacts

Traditional digital forensics operates on a foundational assumption: consequential decisions leave *communicative traces*. Before a developer ships vulnerable code, they discuss it with colleagues. Before an executive approves a risky deployment, they receive briefings and send directives. These communications create an evidentiary chain. Al systems invert this model. The most critical "decisions"—which data to train on, which safety validations to enforce, which failure modes to prevent—are encoded directly into machine configurations, pipelines, and parameters. A developer can commit code that disables security validation with a terse commit message ("perf optimization") that

reveals nothing about intent, while the *code itself* constitutes dispositive evidence of conscious risk acceptance. This shift demands a corresponding evolution in forensic methodology. The question is no longer "what did they say about the risk?" but rather "what choices did they encode into the system, and what did those choices reveal about their knowledge and intent?".

## II. Forensic Domains: The New Evidentiary Landscape

Al systems generate four categories of forensic artifacts, each providing distinct evidentiary value for reconstructing organizational *mens rea*:

#### • Domain 1: Training Pipeline Artifacts

**Evidentiary Focus:** Configuration files, hyperparameters, and pipeline scripts that govern how a model learns from data.

**Legal Significance:** These artifacts document the *foundational choices* about what the Al optimizes for and what constraints it operates under. A training configuration that disables security validations is direct evidence that safety was consciously deprioritized.

#### Domain 2: Version Control System (VCS) Histories

**Evidentiary Focus:** The complete, immutable ledger of every code change, its author, timestamp, and associated commit message.

**Legal Significance:** VCS histories are the closest Al development equivalent to a corporate email server—they capture the *temporal sequence* of developer decisions and create an unbreakable chain of custody for code.

#### • Domain 3: Operational & Inference Logs

**Evidentiary Focus:** Real-time logs generated by the Al during production operation, capturing inputs, decision logic, confidence scores, and outputs.

**Legal Significance:** These logs are the Al's "decision transcript." For autonomous agents, inference logs reveal whether failures resulted from unforeseeable emergent behavior or from executing flawed incentive structures that were deliberately programmed.

#### • Domain 4: Data Provenance & ETL Pipelines

**Evidentiary Focus:** Logs documenting where training data originated, what transformations it underwent, and what validation checks were applied.

**Legal Significance:** In data poisoning attacks, liability centers on whether the organization exercised reasonable due diligence in data acquisition. The ETL logs are the only objective record of this diligence.

# III. The Three-Domain Forensic Framework: Reconstructing Mens Rea

Establishing willful negligence requires proving three distinct mental states, each supported by specific artifact patterns:

#### Domain I: Knowledge (Proving Awareness of Risk)

**Legal Standard:** The organization must have known, or reasonably should have known, that its Al system posed specific risks.

Forensic Evidence Chain: Internal documentation (Jupyter notebooks, wikis), developer communications (Slack, Jira, code reviews), and configuration-level acknowledgments (# WARNING: Disabling validation to meet Q4 deadline).

#### • Domain II: Conscious Disregard (Proving Willful Acceptance of Known Risk)

**Legal Standard:** The organization must have not merely known about the risk, but made a deliberate decision to proceed despite that knowledge.

**Forensic Evidence Chain:** The "Acknowledged-Then-Ignored" pattern, the "Resource Allocation Pattern," and the "Explicit Trade-Off" pattern.

#### • Domain III: Concealment (Proving Intent to Obscure Evidence)

**Legal Standard:** Post-incident actions that demonstrate intent to hide the original negligence can transform a negligence case into fraud or obstruction.

**Forensic Evidence Chain:** Log tampering, the "Silent Patch" pattern, deliberately inadequate logging configurations, and evidence spoliation during legal discovery.

## IV. Case Study: Financial Services AI Trading Failure

- Incident Overview: In Q1 2024, a major financial services firm deployed an autonomous Al trading agent. On March 14, the agent executed 47,000 unauthorized transactions in 11 minutes, resulting in \$1.2B in losses. The firm claimed it was an "unforeseeable emergent behavior".
- Forensic Investigation: Reconstructing Mens Rea
  - **Domain I (Knowledge):** Analysis of the training configuration file (`trading\_model\_v3.yaml`) showed risk constraints were explicitly disabled. Slack messages and a Jupyter notebook proved developers and data scientists were aware of the specific failure mode two weeks before deployment.
  - **Domain II (Conscious Disregard):** Git history analysis revealed a security validation check was added and then consciously removed to meet an earnings call demo deadline. An email from the CTO explicitly acknowledged the risks but approved the deployment to demonstrate capability to investors.
  - **Domain III (Concealment):** AWS CloudTrail logs showed mass deletion of S3 objects in the `trading-logs/` bucket within hours of the incident. Git reflog analysis revealed a `git push --force` command was used to rewrite history and hide evidence. A "silent patch" was deployed the next day with no disclosure.
- **Legal Outcome:** The three-domain forensic analysis established a clear chain of culpability. The case was settled pre-trial for \$480M.

## V. Legal Framework Integration & Conclusion

The accountability crisis in Al-driven security failures is not a problem of legal theory—it is a problem of *forensic methodology*. The framework presented here provides investigators, prosecutors, and regulators with the tools to follow the forensic trail from catastrophic Al failure back to its source: the documented, verifiable, and often damning choices made by the organizations that deployed these systems. The era of "the Al did it" as a liability shield is over.